If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-30x-80=0
a = 1; b = -30; c = -80;
Δ = b2-4ac
Δ = -302-4·1·(-80)
Δ = 1220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1220}=\sqrt{4*305}=\sqrt{4}*\sqrt{305}=2\sqrt{305}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{305}}{2*1}=\frac{30-2\sqrt{305}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{305}}{2*1}=\frac{30+2\sqrt{305}}{2} $
| 7n-4=31n | | 56x^2=56 | | 3m=14.4 | | 2x3-1=53 | | n+57/3=-4 | | 80+60=10x | | 180=76+(2x+4) | | 1/5c-13=-2.3 | | 27-3v=75 | | 10y=1,000y= | | 4m+3=5-2m | | -16x^2+40x+56=75 | | k-55/10=8 | | 10z=10,000z= | | k-55/10=—8 | | 90=20+(x-8) | | b/0.5-8.6=-2.8 | | 9(4x+2)=7(5x-8)x+ | | x-40/21=-35 | | b+9/10=4 | | 267=166-u | | x-21/15=-20 | | j+5/9=3 | | -2=u/3-6 | | x/2+11=-7 | | 3y=-5-0 | | u+40/8=-5 | | -7x-15=-41 | | b+37/7=-7 | | 8+-4q=-28 | | 20+9w=83 | | 9=z+49/8 |